博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
经典相关分析,典型关分析, CCA,Canonical Correlation Analysis,多元变量分析,线性组合,相关系数最大化...
阅读量:6415 次
发布时间:2019-06-23

本文共 705 字,大约阅读时间需要 2 分钟。

1.从概率论中相关系数推广而来

  在概率论中,研究两个变量之间的线性相关情况时,提出了 相关系数 这个概念。做一下推广,如果研究一个变量和多个随机变量之间的线性相关关系时,提出了 全相关系数(或者复相关系数)的概念。然后,在1936年,有个叫做hotelling的数学家,又进一步做了推广,研究 多个随机变量和多个随机变量之间的线性相关关系,提出了 经典相关分析 的理论。

 

2.经典相关分析的定义

  经典相关分析是研究两组变量相关关系的一种多元统计方法

  要研究两组变量:之间的相关关系,有两种方法:一、列出一张表,就像研究协方差矩阵一样,这张表中包含两组变量任意两个变量之间的相关关系。然后,就基于这张相关系数表进行分析。二、像主成份分析pca一样,在每一组变量中,都选取若干综合指标,这些综合指标是由变量线性组合而成。通过研究两组综合指标之间的关系来研究变量之间的线性关系。

3.具体步骤

  寻求每一组变量的线性组合,然后两组变量的线性组合之间具有最大相关性。这中组合不唯一,而且也可能把变量的所有特征全部涵盖。

  继续寻求寻求每一组变量的线性组合,而这一次则要求两组变量的线性组合之间具有最大相关性,而且要与第一次找到的组合不相干。也就是具有一种类似于正交的关系

  典型相关分析,为什么叫作典型。每一组变量的线性组合得到的新变量,X和Y 称之为典型变量。

 

4.具体计算过程,如下:贴大图

 

  

 

 

 5. cca的其余解释版本 参考:

 

 
本文转自二郎三郎博客园博客,原文链接:http://www.cnblogs.com/haore147/p/3629955.html,如需转载请自行联系原作者
你可能感兴趣的文章
马哥linux作业--第八周
查看>>
dubbo01
查看>>
python 写json格式字符串到文件
查看>>
分布式文件系统MogileFS
查看>>
电力线通信载波模块
查看>>
linux vim详解
查看>>
Java23种设计模式案例:策略模式(strategy)
查看>>
XML解析之DOM4J
查看>>
图解微服务架构演进
查看>>
SQL PATINDEX 详解
查看>>
一些常用的网络命令
查看>>
CSP -- 运营商内容劫持(广告)的终结者
查看>>
DIV+CSS命名规范有助于SEO
查看>>
js生成二维码
查看>>
C指针练习
查看>>
web项目buildPath与lib的区别
查看>>
php对redis的set(集合)操作
查看>>
我的友情链接
查看>>
ifconfig:command not found的解决方法
查看>>
js使用正则表达式判断手机和固话格式
查看>>